A Simpler and Self-Contained Analysis for
Approximate Packing and Covering LPs via
Weight Update Rule

Sorrachai Yingchareonthawornchai
Department of Computer Science and Engineering, Michigan State University, USA
yingchar@cse.msu.edu

—— Abstract

Algorithms for fast approximate solving of packing and covering LPs have been presented in
various forms, e.g. by Plotkin-Shmoys-Tardos and Garg-Kénemann, which are later simplified
through the lens of multiplicative weight update (MWU) by Arora-Hazan-Kale. We can think of
MWU framework as a reduction from solving a packing LP with many constraints, to solving a
simpler LP with only one (average) constraint. The beauty of MWU framework is that not only
MWU-style algorithm can solve the approximate primal LP, but also can solve the approximate
dual LP at the same time. This fact is useful for efficiently solving an LP with exponential
number of constraints, but its dual has only linear number of constraints. A natural question is
that is there a natural MWU algorithm that solves both primal and dual LPs simultaneously with
elementary analysis? In this work, we present a MWU-style algorithm based on Garg-Kénemann
that admits a simpler analysis, allowing to obtain a stronger result. The key novelty is in
the analysis where we directly bound primal and dual gaps over time whereas Garg-Kénemann
and Arora-Hazan-Kale focus only on obtaining the primal solutions. Our result can be viewed as
another refinement of Garg-Kénemann and Arora-Hazan-Kale with natural choices of parameters
and oracle.

2012 ACM Subject Classification Design and Analysis of Algorithms
Keywords and phrases MWU, Linear Programming, Algorithm Design

Digital Object Identifier 10.4230/0ASIcs...1

1 Introduction

Algorithms for fast approximate solving of packing and covering LPs have been presented
in various forms, e.g., by Plotkin-Shmoys-Tardos (PST) [11], and Garg-Kénemann (GK)
[8], which are later simplified through the lens of multiplicative weights update (MWU)
by Arora-Hazan-Kale (AHK) [2]. PST [11] give early MWU-style algorithms, but their
running time depends on width parameter of the LPs. The width is considered the main
bottleneck of the running time since it can be huge. Later on, GK [8] present a clever
technique to obtain width-independent algorithms for multicommodity flow and packing LPs.
Recently, AHK [2] popularize MWU algorithms in their comprehensive survey which we can
view PST and GK through MWU framework. The framework follows an abstract problem
called learning from experts’ advice problem, which is applicable in wide range of problems
including solving approximate packing LPs. Packing LP is a linear program of the form
max{#- ¥ : AT < & > 0} and its dual covering LP of the form min{¢- ¢ : ATy > ¥, 7 > 0}
where A € RZ¢, 7 € RY,, ¢ € RY,.

We can think of MWU framework as a reduction from solving an LP with m constraints,
to solving a simpler LP with only one (average) constraint. We call the simpler LP as an
oracle problem. In particular, packing LPs can be viewed as packing objects (such as trees,

© Sorrachai Yingchareonthawornchaij;
37 licensed under Creative Commons License CC-BY

\\v OpenAccess Series in Informatics
OASICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:yingchar@cse.msu.edu
http://dx.doi.org/10.4230/OASIcs...1
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de
Omri Weinstein

1:2 A Simpler and Self-Contained Analysis for Approximate Packing and Covering LPs via Weight Update Ru

Table 1 Comparisons of width-independent MWU-based algorithms (restricted to packing or
covering LPs).

Algorithms | Primal | Dual | Simple?
GKJ[8] Yes No No
AHK][2] Yes No Yes
CJIV[4] Yes Yes No
This paper Yes Yes Yes

paths, cuts, and so on) as much as we can without violating m constraints. The oracle
problem is typically computing the minimum objects (minimum spanning trees, shortest
paths, minimum cuts, and so on) with respect to current weights on each constraint. Here,
a MWU-based algorithm starts by initializing weights of each constraint. Then, it calls
an oracle to get the minimum weighted object. In turn, it penalizes every constraint that
belongs to this minimum object by roughly a 1 4 € multiplicative factor, for some small
constant €. We repeat this process until some stopping conditions. The running time is
measured in terms of number of oracle calls. MWU algorithms differ on initialization, weight
update rules, stopping condition, and oracle. For width-independent algorithm, GK show
that O(%mlogm) oracle calls suffices.

The beauty of MWU framework is that not only MWU-style algorithm can solve the
approximate primal LP, but also can solve the approximate dual LP at the same time. It is
folklore that we can use weights as dual variables; with appropriate scaling, we can show
that primal and dual solutions converge towards to optimal solutions. This fact, however,
does not immediately follow from algorithms by GK, and AHK since their parameters seem
to engineer towards obtaining the approximate primal solution (more detail later in this
section). Recently, ChekurisJayram=Vondraks(CJIV)u[d3m3phas sketched the proof of how to
obtain such solutions. However, the full proof is not self-contained: to understand its full
proof, one needs to consult [2] for standard MWU framework, and [4] for their proposed
MWU algorithm, and [5] for its specialization to packing LPs. We note that their remarkable
algorithm in [4] is based on discretization of continuous optimization via MWU framework,
which is designed for solving more general problems than LPs, and is quite involved.

The fact that we can obtain dual solutions from the algorithm that solves primal LP
gives us a technique to efficiently solve an LP with exponential number of constraints, but its
dual has only linear number of constraints. For example, a recent breakthrough on fast LP
solver for Held-Karp bounds for metric TSP [3] leverages this technique. It reduces to the
problem of finding the minimum fractional 2-edge connected spanning subgraphs (2ECSS).
However, 2ECSS LP has exponential number of constraints (i.e., every cut has at least two
crossing edges). The dual LP of 2EGSS is a fractional cut-packing problem where there are
only m constraints on each edge. In this way, we can use MWU framework on cut-packing
problems and obtain 2ECSS solutions indirectly so that the number of oracle calls is still
near-linear in number of edges.

A natural question is that is there a natural MWU algorithm that solves both primal and
dual LPs simultaneously with elementary analysis? In this work, we present a MWU-style
algorithm based on GK that admits a simpler analysis, allowing to obtain a stronger result.
The key difference is in the analysis where we directly bound primal and dual gaps over
time whereas GK and AHK focus only on obtaining the primal solutions. Our result can be
viewed as another refinement of GK and AHK with natural choices of parameters and oracle.
For concreteness, we will discuss on solving maximum flow LPs which we will formalize in

Omri Weinstein

Omri Weinstein

S. Yingchareonthawornchai

next Section. The oracle problem is thus the shortest path problem. Recall that MWU-
based framework needs to specify (1) initial weights, (2) weight update rule (3) stopping
condition and (4) oracle problem. Weight update rule and stopping conditions are similar for
MWU framework. We will focus on difference in initial weights and oracles. The choices of
parameters in GK, and AHK seem to be engineered toward obtaining the primal solutions in
their proofs. In GK, they initialize weight to be (1 + ¢).((1 4 €)m)~'/¢ where ¢ > 0. In AHK,
they initialize weights to be uniformly 1, and use oracle as a shortest path whose weight is
normalized by capacity. This oracle allows them to relate analysis to the online learning
from experts problem, which is an abstract problem for MWU framework. Our paper uses
initial weight to be reciprocal to capacity of an edge. Intuitively, we should not prefer edge
with high capacity as part of the shortest path. Our oracle is a pure shortest path of the
current weights. We summarize in Table 1. We note that our simplicity assessment is based
on whether or not the algorithm is natural and self-contained for readers who are new to
this area.

Other related work. We focus on simplifying the classic result by Garg-Kénemann
[8] where we focus on solving an implicit LP with access to oracle where we count only
number of calls to the oracle to get a near-optimal solution. Subsequent improvements can
be made such as those in [7]. There are algorithms that solve more general LP such as
positive LPs[9, 1, 6] in which algorithms tend to be more involved and far developed. For
pure running time, it is possible to speedup the solving time even further when combined
with dynamic algorithms. The key idea is we do not have to recompute everything from
scratch. For example, for maximum multicommodity flow problem, it is possible to speed-up
shortest path oracle by casting to decremental dynamic All-Pair-Shortest-Paths (APSP)
problem [10]. This improves from O(m?) if we call shortest paths oracle repeatedly to O(mn)
with dynamic APSP where m is number of edges and n is number of nodes. Another example
includes solving 2ECSS in nearly linear time using decremental minimum cuts [3].

The paper is organized as follows. We present an algorithm for solving approximate
maximum flow and minimum cut in Section 2. Then, we generalize to solving general packing
and covering LPs in Section 3. Finally, we conclude in Section 4.

2 Approximate Maximum Flow and Minimum Cut

We describe an algorithm for approximate maximum flow and minimum cut to demonstrate
the main idea for the new analysis. Our analysis extends naturally to the general case
of packing and covering LPs. We first describe the maximum flow problem in terms of
packing LPs (with possibly exponential number of variables in the primal) as follows. In
a flow network G = (V| E) with edge capacity c. for e € E, let P be the set of all possible
paths from a fixed source s to a fixed sink . Our goal is to route the maximum possible
amount of flow though paths in P such that total amount of flow on each edge does not
exceed its capacity, f(e) = Zpae fp < ce. The dual version is the minimum cut problem
that is to find a minimum fractional weighted cut such that every path has length at least 1,
w(p) = ZeEp we > 1. We summarize the problems in Figure 1. We use n to denote number
of vertices and m to denote number of edges of the graph.
Our algorithm is based on the MWU-style update rules.

2.1 Algorithm

Denote by w® the weight function at time ¢t. We set initial weight of each edge to be

wgo) = % We repeat the followings. At round ¢, we compute the shortest path p(*)

(&

1:3

1:4 A Simpler and Self-Contained Analysis for Approximate Packing and Covering LPs via Weight Update Ru

maximize Z o minimize Z CelWe
peP eck
st. fle)<ec., e€E st. w(p)>1, peP
fp>0, peP we >0, e€F

Figure 1 Maximum flow LP and its dual.

in the graph with current weight function w®. Let e* be the minimum capacity edge

in path p(*). We route flow of value f*) = c.. along this path. We update weights of

edges along the path proportionally to their capacity: for each edge e € p'*), we update

wétﬂ) = wgt)(l + iﬁ) We stop this procedure when there is an edge with “high congestion”.

More precisely, let Flow(e,t) be the amount of flow that edge e receives at round ¢t. We

ZZ;I Flow(e,t)
(&

e

define congestion cong®(e) = and cong® (@) = max, cong® (e). We stop

when(E€ong@(G=) This completes the description of the algorithm.

t)
Ey:l Flow(e,j)
cong® (G)

D® = {wgt)/w(p(t))}eeE is a feasible solution for the dual, with the (dual) objective value
of D(t) = W /w(p®) where W =3 _. cow”.

Below, we will argue that the primal and dual solutions converge to each other, which
would imply that both of them are near-optimal. Let T be the final iteration. We denote
the value of the primal solution F = W ZtT:1 f® as the value of total flow routed

It is easy to see that f(*) (e) = is a feasible solution to the primal, and that

according to the primal solution £(7). For dual solution, we denote D as the minimum over
all D(t) for all t.

» Theorem 1. After O(% logm) rounds, primal and dual solutions converge to % >1-0(e).

Tracking the dual objectives:

The key player in the analysis is the value of the dual objective W®), which will be used as
a potential function. Here, we explicitly calculate such values. Since only edges on the path
p(Y) get updated, the increase of dual objective function is ef(t)w(p(t)). Thus, the change
in this term follows the rule: W+ = W) (1 + Cf(f:”#) We summarize this change in
Proposition 1.

» Proposition 1. The values of W) change according to the following rule:

6f(t)w(p(t))

(t+1) _ (0
WD = w1+ =

2.2 Analysis

We describe an overview of the proof, which is reminiscent of the proof of multiplicative
weight update algorithms for learning from experts’ advice problem. We use dual objective
W® as a potential function. We can bound the global change in W®) using Proposition 1
which gives us the upper bound of W (). On the other hand, we can bound the local change
in weights of each edge given by update rule, and use the fact that W > cewg) to get the

Omri Weinstein

S. Yingchareonthawornchai

lower bound of W®). Finally, we can relate the primal and dual solutions via the upper and
lower bounds of the dual objective at the final round, W(T). We next formalize the proof.
We formulate the upper and lower bounds of W(T) into two Lemmas.

» Lemma 2. After T iterations,

(t)

W(T) < mexp(i €f)
= PO

Proof. By Proposition 1 and the fact that D(t) = e ((t))),

Since we initialize weight of each edge e as +, we get W) =

we get WD = WO (1 + 6[{((;)))

= m. We can expand the products

to get W(T) = m]_[t 11+ ED(t)) The result follows by using the inequality 1 +x < e*. <«

» Lemma 3. After T iterations, and for all edge e,

1
w") > — exp(e(1 — €)cong™)(e))

€

Proof. We first fixed an edge e. By update rule, wgtH) (t)(l +el=) if e is in the shortest
path, and no change otherwise. Recall that Flow(e, t) is the amount of flow e received at round
t which is either f(t or 0. We can rewrite the local update as w(tH) (t)(l +e€ M)
Note that w£°) L by initialization. We can expand the products to get the final weight
at round T as w(T) L Ht 1(I+e Flow(e Flow(e:t)) The result follows by the inequality 1 + z >

exp(z — 2?) for 0 < z < 0.5. We can wrlte wt™ > L exp(thzl(eFlo‘Zi(ei))(l — eFIOVCVi(et))) >

L exp(Xi, e g) (1 -) = - exp(e(l — e)eong ™ (e). <

We are ready to prove the main claim.
Proof of Theorem 1. At any iteration ¢, the dual objective function W) is at least cow (¢).
Using Lemma 2, and Lemma 3, we have:

W > e

T t
mexp() > exp(e(l — e)cong(T)(e))
t:l
T
1 f(t)
- Inm + Z 0 > (1 — €)cong™) (e)
t=1
T
f(t)) 1
> (1— 2
ZD(t) > (1 —€)cong'/(e) _lnm

® ®
Next, we use the fact that D is the minimum dual solution so far. So, Zt 1 f : > Zt 1 {) ;)7
and we get:

~

i @1 Zf(t) > (1 e)cong™ () L,
L= — —~In
2 D D 2 = € ng e c m

1:5

1:6

A Simpler and Self-Contained Analysis for Approximate Packing and Covering LPs via Weight Update Ru

Since this is true for any edge, it is true for the faxinim congested edge, cong(™)(G), So,

T
1 1
) E f® > (1 —e)cong™(G) — =Inm
€
t=1

T et
L 2 gy lm
D cong™)(G) cong(™)(G)e
F Inm
(1)
D~ (1—¢) cong(™)(Q)e

Recall that our primal solution F' is the total flow scaled down by the maximum congestion
cong(™) (G@). Finally, the algorithm terminates when there is an edge with high congestion
which means we stop when cong(™) (G) > 12% Hence,

%2(1—26)

Finally, we show the number of iterations is at most T = O(6% logm). This is because
each iteration, there must be a bottleneck edge e, which has the lowest capacity in the
shortest path. This means the congestion of e will increase by 1 since we route ¢, amount of
flow through this path. By our stopping condition, each edge can be the bottleneck at most
O(% logm) times. Therefore, with m edges, total number of iterations is O(mt’#)

<

3 Approximate Packing and Covering LPs

There is nothing special about maximum flow problem, which can be viewed a path packing
problem. We will show that essentially the same proof goes through the general packing LPs.
Packing and its dual covering LPs have the form as in Figure 2. Denote A as a matrix of size
m by n. Let f, w be primal and dual variables, respectively. Let ¢, ¥ be a vector of length m,
and length n, respectively. All entries in A, ¢, ¥ are non-negative real numbers.

We follow a scheme from Garg-Kénemann[8] that we can view primal LP as a variant of
maximum flow as follows. We consider j-th column of A as the j-th path, shipping a flow of
color j (e.g., gold) with value v(j) per unit of flow. Also, we can view i-th row of A as the
i-th edge, a pipe made by material i (e.g., wooden) with capacity ¢(i). We have additional
interaction rule: a unit of flow of color j consumes A(4, j) unit of capacity of pipe i.

Notations. We will reuse and most of notations since the algorithm and analysis are
similar to the maximum flow problem in previous section. We will slightly redefine them for
LPs in Figure 2. As we shall see, many key Lemmas can be stated in the identical form as

those in the previous section. For path p, we use p € {1,2,...,n} as an index for ¥ such as
v(p). For edge e, we use e € {1,2,...,m} as an index for .
maximize - f minimize ¢&- W
st. Af<é st. ATw>7
fzo @ >0

Figure 2 General packing and cover LPs.

Omri Weinstein

S. Yingchareonthawornchai

3.1 Algorithm

We set initial weight of each edge to be ci We repeat the followings. For current weights,
we define the length of path p € {1,2,...,n} as w(p) = ﬁ(ATu'i(t))p = ﬁ D A(e,p)wgt)

for e € {1,2,...,m}. At round ¢, let p® be the shortest path whose length is w(p®).

For a fixed flow of color p(), each edge e has normalized capacity of % unit. Let

(e®
e(Y) be the bottleneck edge with minimum normalized capacity. We route % unit

of flow of color p®). Note that flow value in this round is f® = %. We update

(t+1) _ ,® c(e)/A(e® p') ;
we’ (14 €) TA(ep)). We repeat until

weights as follows: for each edge e, we
there is an edge with high congestion. More precisely, define cong® (e) = i > Alep) fps
and cong®(G) = max, cong!)(e). We stop when cong®(G) > 2% This completes the
description of the algorithm.

Similarly to the case of maximum flow, we compute the change of the dual objective
function, W® = 3" _cowe.

» Proposition 2. The values of W) change according to the following rule:

f(t)w(p(t))
W @)

WD) — W(t)(l +e
Proof. We can bound the change of dual objective function using local update as follows:

c(e®)

WD = Zc w(t"’l) = Zc w(t e(t) o ZA (e p(t

(e
Recall that f(*) = v(p(t))m. So, we get:

W(t+1>:W(t)+€f<t> D) = WO 4 e fO(p®)

The last equality follows since e m) > Ale, p®)we ¢ - = w(p®) by definition of path length
<

3.2 Analysis

We can obtain primal and dual solutions in the similar way as in the case of maximum-
flow. Let C' be the maximum congestion over all edges at the end of the algorithm, C' =
cong™(G) = max, cong(™)(e) . The primal solution, F, is the total value of flow (of various
colors) scaled down by a factor of maximum congestion, F' =", , %) For dual solution,
define w(p(t)) is the length of the shortest path at time ¢, and W® is the objective dual
solution at the t. Each iteration ¢, we have a dual solution D(t) = %. We choose the
dual solution D as the minimum D(t) over all ¢.

» Proposition 3. Primal solution F' and dual solution D are both feasible.

Proof. First we show that primal solution F' is feasible. Consider when the algorithm
terminates at time 7. Let e¢* be the edge (row of A) that is maximally congested. By
definition of congestion, (Af)e = c(e*)cong™)(e*). In other words, for all edge e, (Af). =
c(e)cong™(e) < c(e)cong™)(e*). Hence, by dividing f by C = cong(™)(e*), which is the

1:7

1:8

A Simpler and Self-Contained Analysis for Approximate Packing and Covering LPs via Weight Update Ru

—

maximum congestion on every edge, we ensure that (A4 f’)e < c(e) where f’ = % f. Hence, F
is feasible.

Next, We show that the dual solution D is feasible. That is, we need to show that
D(t) = ((,)) is feasible for all t. Recall p®) is the shortest path (row of AT). By definition

of path length, W(A W) pey = w(p®). In other words, for all path D, ﬁ(ATw)p =

(p) > w(p®). Hence, by dividing by w(p®), we ensure that (ATw)p > 1 where

w
W'

v(p)

—1 <. Hence, D is feasible.
w(pt®)
<

» Theorem 4. After O(% logm) iterations, the solutions F//D > 1 — O(e).

The proof is essentially the same as the case of maximum flow. The difference is in the
details of how to get upper and lower bounds of the same potential function, W (). We now
present two key Lemmas.

» Lemma 5. After T iterations,

(t

T
W) < mexp Z

Proof. The proof is identical to Lemma 2 by using Proposition 2 and D(t) = % <
» Lemma 6. After T iterations, and for all edge e,
1
w® > . exp(e(1 — €)cong ™) (e))
Proof. By update rules, for each edge e,
() &))
Wit = 0 (1 4+ Ec(e)/A(e), p)
c(e)/Ale,p")
Fix an edge e. We can expand from 7" to the base case. So,
T T
1 e(t))/A((t) p(t)) 1 1 c(e (t))
=— 1101 ’ > — e(l—¢)— A
= 1 +e c(e)[A(e, p0)) o exp(e €) o(e) ; e p A(e® p(t)))
The inequality follows by 1+ x > ¢*~% . Note that W()W represents amount of flow in

day t of color p¥), and thus summing over all days we get total flow weighted by A which

is the same as c(e)cong(™)(e). Hence, Zle A(e,p(t))ﬁ% = c(e)cong(™) (e). The result

follows by plugging last equation into the previous inequality. |

Proof of Theorem 4. The proof of approximation ratio is identical to the proof of Theorem
1 by using Lemma 5, and Lemma 6 for potential function W) to obtain £ > (1 — 2e).
The desired approximation ratio follows by weak duality since F' and D are both feasible
solutions by Proposition 3.

We now bound the number of iterations. Since we stop when there is an edge with conges-
tion at least % Inm. This means for all edge e, congestion is cong™ (e) = L 37 A(e,p)f, =
O(ZInm). Whenever edge e is the bottleneck edge at time ¢, the new ﬂow consumes c(e)

S. Yingchareonthawornchai

unit of e’s capacity, and hence the congestion will increase by one. This is because we route
c(e)
Ale,p®)

be the bottleneck edge at most O(%2 Inm) time. Since there are m edges, the number of
iterations is at most O(Lmlogm).

€

unit of flow and flow color p®) consumes A(e, p*)) unit of e’s capacity. Hence, e can

<

4 Conclusion

We provide a direct stronger proof of the classic result by Garg-Kénemann. The key novelty
is in the analysis where we bound the primal and dual gap directly using dual objective as a
potential function. We believe this our result is elementary and self-contained.

Acknowledgement:

We thank Parinya Chalermsook and Thatchaphol Saranurak for helpful discussions, encour-
agements and pointers to relevant literature.

—— References

1 Zeyuan Allen-Zhu and Lorenzo Orecchia. Nearly-linear time positive Ip solver with faster
convergence rate. In Proceedings of the Forty-seventh Annual ACM Symposium on Theory
of Computing, STOC ’15, pages 229-236, New York, NY, USA, 2015. ACM. doi:10.1145/
2746539.2746573.

2 Sanjeev Arora, Elad Hazan, and Satyen Kale. The multiplicative weights update method:
a meta-algorithm and applications. Theory of Computing, 8(6):121-164, 2012. doi:10.
4086/toc.2012.v008a006.

3 C. Chekuri and K. Quanrud. Approximating the held-karp bound for metric tsp in nearly-
linear time. In 2017 IEEE 58th Annual Symposium on Foundations of Computer Science
(FOCS), pages 789-800, Oct 2017. doi:10.1109/F0CS.2017.78.

4 Chandra Chekuri, T.S. Jayram, and Jan Vondrak. On multiplicative weight updates for
concave and submodular function maximization. In Proceedings of the 2015 Conference
on Innovations in Theoretical Computer Science, ITCS 15, pages 201-210, New York, NY,
USA, 2015. ACM. doi:10.1145/2688073.2688086.

5 Chandra Chekuri and Kent Quanrud. Near-linear time approximation schemes for some
implicit fractional packing problems. In Proceedings of the Twenty-FEighth Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA ’17, pages 801-820, Philadelphia, PA,
USA, 2017. Society for Industrial and Applied Mathematics.

6 Chandra Chekuri and Kent Quanrud. Randomized mwu for positive lps. In Proceedings
of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 18,
pages 358-377, Philadelphia, PA, USA, 2018. Society for Industrial and Applied Mathem-
atics.

7 L. Fleischer. Approximating fractional multicommodity flow independent of the number of
commodities. STAM Journal on Discrete Mathematics, 13(4):505-520, 2000. doi:10.1137/
S0895480199355754.

8 N. Garg and J. Kénemann. Faster and simpler algorithms for multicommodity flow and
other fractional packing problems. SIAM Journal on Computing, 37(2):630-652, 2007.
doi:10.1137/50097539704446232.

9 C. Koufogiannakis and N. E. Young. Beating simplex for fractional packing and covering
linear programs. In 48th Annual IEEE Symposium on Foundations of Computer Science
(FOCS’07), pages 494-504, Oct 2007. doi:10.1109/F0CS.2007.62.

1:9

http://dx.doi.org/10.1145/2746539.2746573
http://dx.doi.org/10.1145/2746539.2746573
http://dx.doi.org/10.4086/toc.2012.v008a006
http://dx.doi.org/10.4086/toc.2012.v008a006
http://dx.doi.org/10.1109/FOCS.2017.78
http://dx.doi.org/10.1145/2688073.2688086
http://dx.doi.org/10.1137/S0895480199355754
http://dx.doi.org/10.1137/S0895480199355754
http://dx.doi.org/10.1137/S0097539704446232
http://dx.doi.org/10.1109/FOCS.2007.62

1:10 A Simpler and Self-Contained Analysis for Approximate Packing and Covering LPs via Weight Update Ru

10 Aleksander Madry. Faster approximation schemes for fractional multicommodity flow prob-
lems via dynamic graph algorithms. In Proceedings of the Forty-second ACM Symposium
on Theory of Computing, STOC ’10, pages 121-130, New York, NY, USA, 2010. ACM.
doi:10.1145/1806689.1806708.

11 S. A. Plotkin, D. B. Shmoys, and E. Tardos. Fast approximation algorithms for fractional
packing and covering problems. In [1991] Proceedings 32nd Annual Symposium of Found-
ations of Computer Science, pages 495-504, Oct 1991. doi:10.1109/SFCS.1991.185411.

http://dx.doi.org/10.1145/1806689.1806708
http://dx.doi.org/10.1109/SFCS.1991.185411

	Introduction
	Approximate Maximum Flow and Minimum Cut
	Algorithm
	Analysis

	Approximate Packing and Covering LPs
	Algorithm
	Analysis

	Conclusion

